Copied to
clipboard

G = C1226C2order 288 = 25·32

6th semidirect product of C122 and C2 acting faithfully

metabelian, supersoluble, monomial

Aliases: C1226C2, C12.47D12, C62.219C23, (C4×C12)⋊7S3, C427(C3⋊S3), C6.51(C2×D12), (C3×C12).122D4, (C2×C12).357D6, C4.5(C12⋊S3), C32(C427S3), C6.95(C4○D12), C6.11D121C2, (C6×C12).287C22, C3212(C4.4D4), C2.7(C12.59D6), C2.6(C2×C12⋊S3), (C3×C6).191(C2×D4), (C2×C324Q8)⋊3C2, (C2×C12⋊S3).4C2, (C3×C6).111(C4○D4), (C2×C6).236(C22×S3), C22.37(C22×C3⋊S3), (C22×C3⋊S3).38C22, (C2×C3⋊Dic3).76C22, (C2×C4).65(C2×C3⋊S3), SmallGroup(288,732)

Series: Derived Chief Lower central Upper central

C1C62 — C1226C2
C1C3C32C3×C6C62C22×C3⋊S3C6.11D12 — C1226C2
C32C62 — C1226C2
C1C22C42

Generators and relations for C1226C2
 G = < a,b,c | a12=b12=c2=1, ab=ba, cac=a5b6, cbc=a6b5 >

Subgroups: 1036 in 228 conjugacy classes, 77 normal (13 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C32, Dic3, C12, C12, D6, C2×C6, C42, C22⋊C4, C2×D4, C2×Q8, C3⋊S3, C3×C6, C3×C6, Dic6, D12, C2×Dic3, C2×C12, C22×S3, C4.4D4, C3⋊Dic3, C3×C12, C3×C12, C2×C3⋊S3, C62, D6⋊C4, C4×C12, C2×Dic6, C2×D12, C324Q8, C12⋊S3, C2×C3⋊Dic3, C6×C12, C6×C12, C22×C3⋊S3, C427S3, C6.11D12, C122, C2×C324Q8, C2×C12⋊S3, C1226C2
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C3⋊S3, D12, C22×S3, C4.4D4, C2×C3⋊S3, C2×D12, C4○D12, C12⋊S3, C22×C3⋊S3, C427S3, C2×C12⋊S3, C12.59D6, C1226C2

Smallest permutation representation of C1226C2
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 119 34 72 76 46 49 133 97 131 92 20)(2 120 35 61 77 47 50 134 98 132 93 21)(3 109 36 62 78 48 51 135 99 121 94 22)(4 110 25 63 79 37 52 136 100 122 95 23)(5 111 26 64 80 38 53 137 101 123 96 24)(6 112 27 65 81 39 54 138 102 124 85 13)(7 113 28 66 82 40 55 139 103 125 86 14)(8 114 29 67 83 41 56 140 104 126 87 15)(9 115 30 68 84 42 57 141 105 127 88 16)(10 116 31 69 73 43 58 142 106 128 89 17)(11 117 32 70 74 44 59 143 107 129 90 18)(12 118 33 71 75 45 60 144 108 130 91 19)
(2 54)(3 11)(4 52)(5 9)(6 50)(8 60)(10 58)(12 56)(13 114)(14 133)(15 112)(16 143)(17 110)(18 141)(19 120)(20 139)(21 118)(22 137)(23 116)(24 135)(25 79)(26 88)(27 77)(28 86)(29 75)(30 96)(31 73)(32 94)(33 83)(34 92)(35 81)(36 90)(37 142)(38 109)(39 140)(40 119)(41 138)(42 117)(43 136)(44 115)(45 134)(46 113)(47 144)(48 111)(51 59)(53 57)(61 130)(62 64)(63 128)(65 126)(66 72)(67 124)(68 70)(69 122)(71 132)(74 99)(76 97)(78 107)(80 105)(82 103)(84 101)(85 98)(87 108)(89 106)(91 104)(93 102)(95 100)(121 123)(125 131)(127 129)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,119,34,72,76,46,49,133,97,131,92,20)(2,120,35,61,77,47,50,134,98,132,93,21)(3,109,36,62,78,48,51,135,99,121,94,22)(4,110,25,63,79,37,52,136,100,122,95,23)(5,111,26,64,80,38,53,137,101,123,96,24)(6,112,27,65,81,39,54,138,102,124,85,13)(7,113,28,66,82,40,55,139,103,125,86,14)(8,114,29,67,83,41,56,140,104,126,87,15)(9,115,30,68,84,42,57,141,105,127,88,16)(10,116,31,69,73,43,58,142,106,128,89,17)(11,117,32,70,74,44,59,143,107,129,90,18)(12,118,33,71,75,45,60,144,108,130,91,19), (2,54)(3,11)(4,52)(5,9)(6,50)(8,60)(10,58)(12,56)(13,114)(14,133)(15,112)(16,143)(17,110)(18,141)(19,120)(20,139)(21,118)(22,137)(23,116)(24,135)(25,79)(26,88)(27,77)(28,86)(29,75)(30,96)(31,73)(32,94)(33,83)(34,92)(35,81)(36,90)(37,142)(38,109)(39,140)(40,119)(41,138)(42,117)(43,136)(44,115)(45,134)(46,113)(47,144)(48,111)(51,59)(53,57)(61,130)(62,64)(63,128)(65,126)(66,72)(67,124)(68,70)(69,122)(71,132)(74,99)(76,97)(78,107)(80,105)(82,103)(84,101)(85,98)(87,108)(89,106)(91,104)(93,102)(95,100)(121,123)(125,131)(127,129)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,119,34,72,76,46,49,133,97,131,92,20)(2,120,35,61,77,47,50,134,98,132,93,21)(3,109,36,62,78,48,51,135,99,121,94,22)(4,110,25,63,79,37,52,136,100,122,95,23)(5,111,26,64,80,38,53,137,101,123,96,24)(6,112,27,65,81,39,54,138,102,124,85,13)(7,113,28,66,82,40,55,139,103,125,86,14)(8,114,29,67,83,41,56,140,104,126,87,15)(9,115,30,68,84,42,57,141,105,127,88,16)(10,116,31,69,73,43,58,142,106,128,89,17)(11,117,32,70,74,44,59,143,107,129,90,18)(12,118,33,71,75,45,60,144,108,130,91,19), (2,54)(3,11)(4,52)(5,9)(6,50)(8,60)(10,58)(12,56)(13,114)(14,133)(15,112)(16,143)(17,110)(18,141)(19,120)(20,139)(21,118)(22,137)(23,116)(24,135)(25,79)(26,88)(27,77)(28,86)(29,75)(30,96)(31,73)(32,94)(33,83)(34,92)(35,81)(36,90)(37,142)(38,109)(39,140)(40,119)(41,138)(42,117)(43,136)(44,115)(45,134)(46,113)(47,144)(48,111)(51,59)(53,57)(61,130)(62,64)(63,128)(65,126)(66,72)(67,124)(68,70)(69,122)(71,132)(74,99)(76,97)(78,107)(80,105)(82,103)(84,101)(85,98)(87,108)(89,106)(91,104)(93,102)(95,100)(121,123)(125,131)(127,129) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,119,34,72,76,46,49,133,97,131,92,20),(2,120,35,61,77,47,50,134,98,132,93,21),(3,109,36,62,78,48,51,135,99,121,94,22),(4,110,25,63,79,37,52,136,100,122,95,23),(5,111,26,64,80,38,53,137,101,123,96,24),(6,112,27,65,81,39,54,138,102,124,85,13),(7,113,28,66,82,40,55,139,103,125,86,14),(8,114,29,67,83,41,56,140,104,126,87,15),(9,115,30,68,84,42,57,141,105,127,88,16),(10,116,31,69,73,43,58,142,106,128,89,17),(11,117,32,70,74,44,59,143,107,129,90,18),(12,118,33,71,75,45,60,144,108,130,91,19)], [(2,54),(3,11),(4,52),(5,9),(6,50),(8,60),(10,58),(12,56),(13,114),(14,133),(15,112),(16,143),(17,110),(18,141),(19,120),(20,139),(21,118),(22,137),(23,116),(24,135),(25,79),(26,88),(27,77),(28,86),(29,75),(30,96),(31,73),(32,94),(33,83),(34,92),(35,81),(36,90),(37,142),(38,109),(39,140),(40,119),(41,138),(42,117),(43,136),(44,115),(45,134),(46,113),(47,144),(48,111),(51,59),(53,57),(61,130),(62,64),(63,128),(65,126),(66,72),(67,124),(68,70),(69,122),(71,132),(74,99),(76,97),(78,107),(80,105),(82,103),(84,101),(85,98),(87,108),(89,106),(91,104),(93,102),(95,100),(121,123),(125,131),(127,129)]])

78 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D4A···4F4G4H6A···6L12A···12AV
order12222233334···4446···612···12
size1111363622222···236362···22···2

78 irreducible representations

dim11111222222
type+++++++++
imageC1C2C2C2C2S3D4D6C4○D4D12C4○D12
kernelC1226C2C6.11D12C122C2×C324Q8C2×C12⋊S3C4×C12C3×C12C2×C12C3×C6C12C6
# reps14111421241632

Matrix representation of C1226C2 in GL4(𝔽13) generated by

0500
8800
0092
001111
,
11900
4200
0058
0050
,
1000
121200
0001
0010
G:=sub<GL(4,GF(13))| [0,8,0,0,5,8,0,0,0,0,9,11,0,0,2,11],[11,4,0,0,9,2,0,0,0,0,5,5,0,0,8,0],[1,12,0,0,0,12,0,0,0,0,0,1,0,0,1,0] >;

C1226C2 in GAP, Magma, Sage, TeX

C_{12}^2\rtimes_6C_2
% in TeX

G:=Group("C12^2:6C2");
// GroupNames label

G:=SmallGroup(288,732);
// by ID

G=gap.SmallGroup(288,732);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,253,64,254,100,2693,9414]);
// Polycyclic

G:=Group<a,b,c|a^12=b^12=c^2=1,a*b=b*a,c*a*c=a^5*b^6,c*b*c=a^6*b^5>;
// generators/relations

׿
×
𝔽